

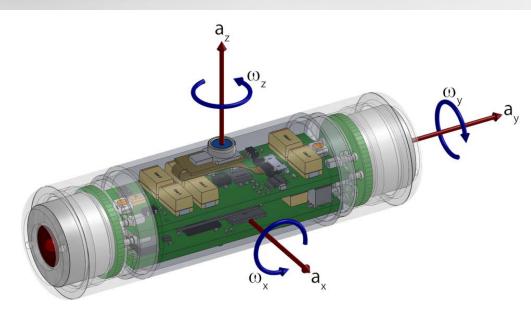
High Head Bypass Study – Sensor Fish – Green Peter Dam, Oregon, 2017

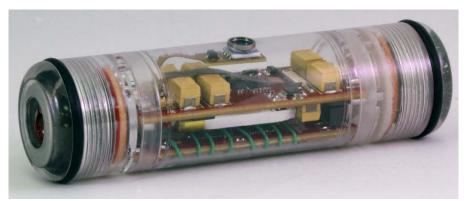
Daniel Deng, Joanne Duncan, Jayson Martinez, Tao Fu

PACIFIC NORTHWEST NATIONAL LABORATORY

Objectives

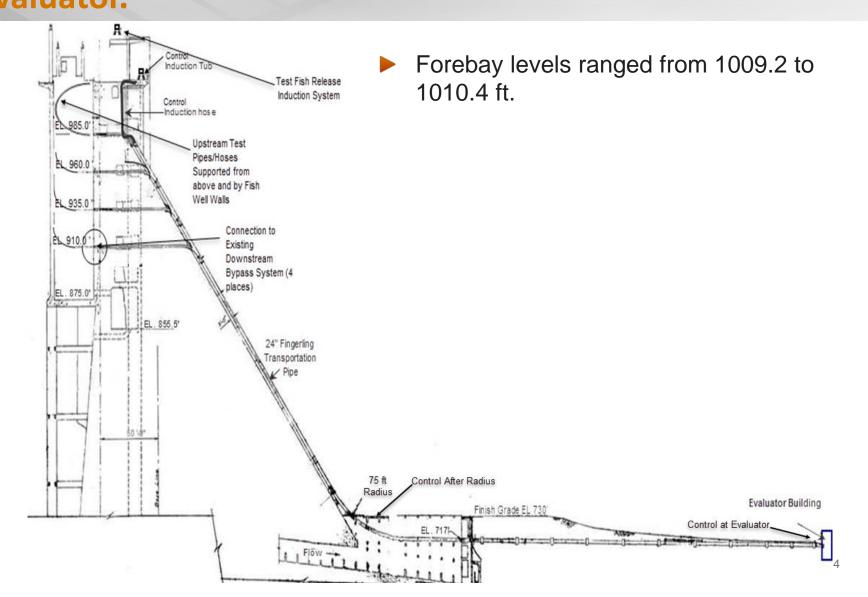
The objectives of the study were to measure the hydraulic conditions at high forebay levels for the following test treatments:


- ▶ One full flow level (valve 100% open) for releases at two bypass pipe elevations (935 and 910 ft);
- ► Two partial flow levels (75% and 50%) each with releases at the two bypass pipe elevations.

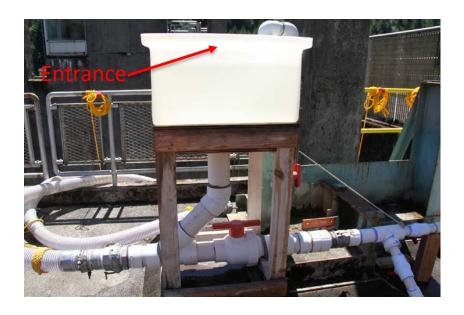

Gen 2 Sensor Fish Device

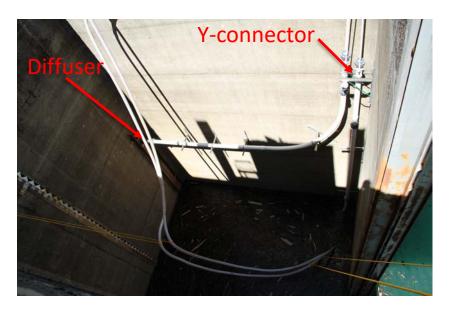
Proudly Operated by Battelle Since 1965

- Autonomous sensor package
- Developed to understand physical conditions fish experience
- Sensor Fish Characteristics
 - Dimensions: 89.9 x 24.5 mm
 - Density: 1.01 mg/mm³
 - Excess mass (wet weight): 0.5 g
 - Sampling rate: 2048 Hz
 - Maximum sampling time: 4 min
 - 3D acceleration: 0 200 g
 - 3D rotational velocity: 0 2000 °/s
 - Pressure: 0 203 psia
 - Temperature sensor: -40 125 °C
 - 3D orientation
 - Automatic floatation system
 - Built-in RF-transmitter
 - Significantly reduced cost



Passage through the Green Peter Dam Downstream Migrant Bypass Pipes to the Fish Evaluator.


Proudly Operated by Baffelle Since 1965



Methods and Deployment

- Sensor Fish were introduced through the same release pipes used by Normandeau for releasing juvenile Chinook salmon and steelhead.
- Sensor Fish releases were interspersed among live fish releases.
- ► Following deployment, Sensor Fish were recovered from the evaluator facility.

Control Releases

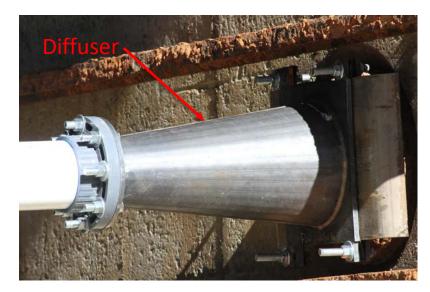
Proudly Operated by Battelle Since 1965

Evaluator building (right), Injection Control System (below).

Methods and Deployment: Treatments

Elevation/Location	Gate Valve Position	Valid Releases	
910	100% Open	69	
935	100% Open	56	
910	75% Open	53	
935	75% Open	53	
910	50% Open	56	
935	50% Open	56	
Control—Evaluator	N/A	38	
	Total	381	

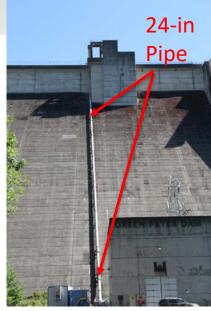
Results: Timing Marks



Proudly Operated by Battelle Since 1965

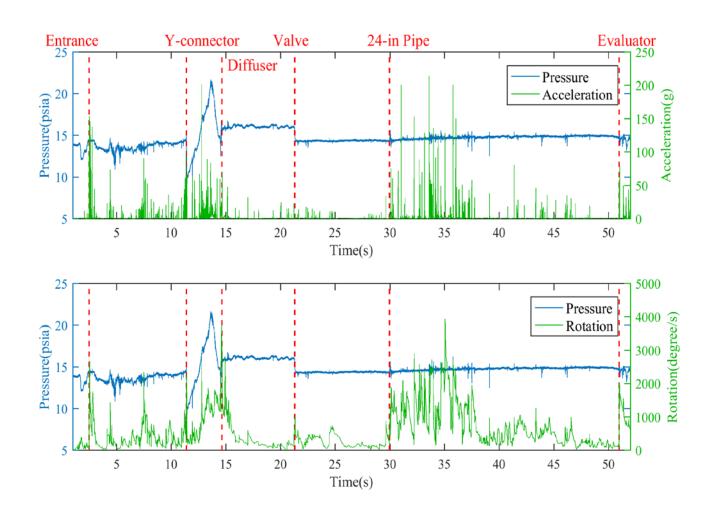
Timing marks were added to each data file, separating the passage route into six regions:

- Entrance: Sensor Fish entry to the injection system.
- Y-connector: The system was designed to convey flow to supplement the injection system by allowing flow at depth to enter via a 4in. pipe.
- ▶ Diffuser: The diffuser connected the 4-in. pipe to a 12-in. pipe, increasing the cross-sectional area of the flow.


Results Timing Marks

Proudly Operated by Battelle Since 1965

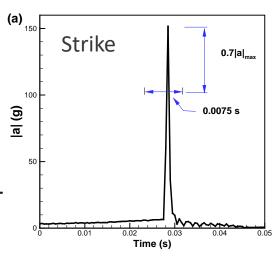
- For the Valve: A knife-valve controlled the flow for the treatments. At the 50% open position, a sudden decrease in pressure and a sharp increase in rotation was visible. At the 100% and 75% open valve position, little difference was seen in pressure or rotation before or after the valve and the timing mark was estimated by assessing the sensor data and time.
- ➤ 24-in. Pipe: Entrance to this region was marked as having a small increase/tremor in pressure with concurrent increases in acceleration and rotation.
- Evaluator: Rotation, acceleration, and a fluctuation in pressure are typical of entrance into this evaluator as the Sensor Fish collides with the metal screens.

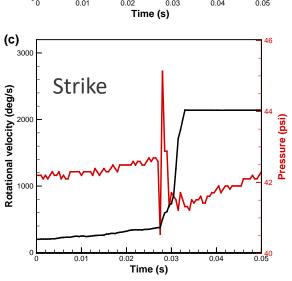


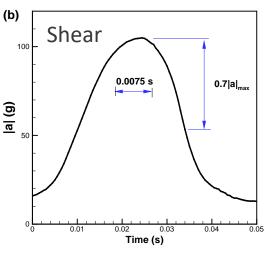
Pacific Northwest NATIONAL LABORATORY

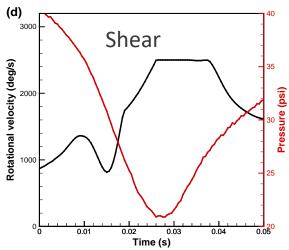
Proudly Operated by Battelle Since 1965

Passage Example: 910 ft Elevation, 50% Gate Valve Opening

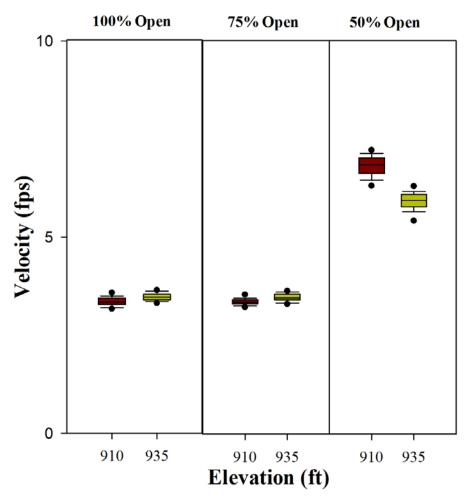



Shear and Strike: Definitions




Proudly Operated by Battelle Since 1965

- Strike: Duration of acceleration within 70% of the peak value is less than 0.0075s.
 - Increases in pressure and rotation are more evident for strike than for shear.
- Shear: Duration of acceleration within 70% of the peak value is greater than 0.0075s.
- Severe event is defined as an acceleration exceeding 95g (932 m/s²).


Average Passage Times and Velocities from the Entrance to the Evaluator

Gate Valve Setting	Elevation (ft)	Travel Time (s)	Velocity (ft/s)
100% Open	910	62.2	12.0
	935	56.9	13.1
75% Open	910	66.5	11.2
	935	58.4	12.8
50% Open	910	48.0	15.6
	935	47.4	15.7

Proudly Operated by Battelle Since 1965

Velocities for most of the regions were similar, with the exception of the time from the diffuser to the 24-in. pipe, which was significantly higher for the 50% open valve condition.

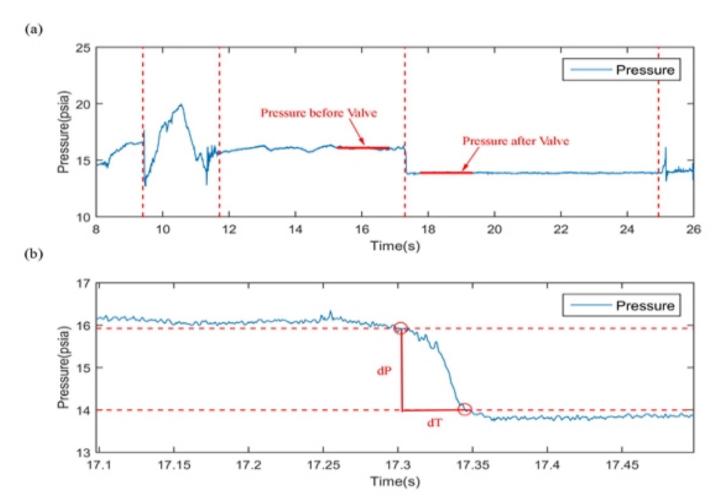
Sensor Fish Severe Events by Treatment and Passage Region

Gate- Valve Setting	Elevatio n (ft)	Valid Releases	Entrance to Y- Connector	Y- connector to Diffuser	Diffuser to Gate Valve	Gate Valve to 24-in. Pipe	24-in. Pipe
100%	910	69	100%	96%	22%	7%	100%
Open	935	56	100%	91%	16%	0%	100%
75%	910	53	100%	94%	36%	2%	100%
Open	935	53	100%	92%	19%	0%	100%
50%	910	56	100%	91%	21%	16%	100%
Open	935	56	100%	95%	20%	9%	100%

P-values comparing Gate Valve Settings

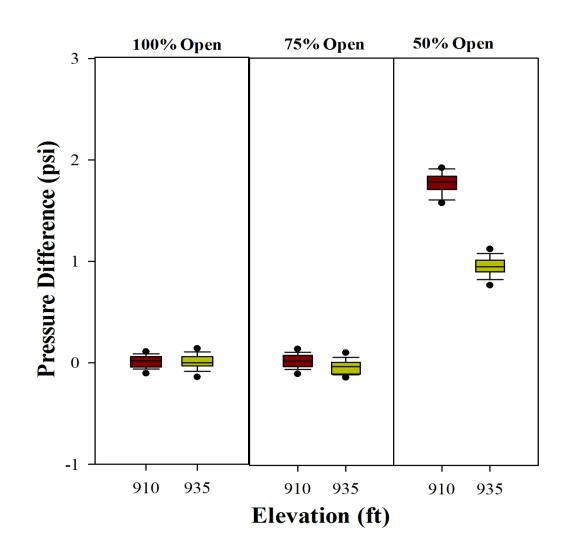
910 ft

	100% Open	75% Open	50% Open
100% Open	-	0.232	0.156
75% Open	0.232	-	0.017
50% Open	0.156	0.017	-


935 ft

	100% Open	75% Open	50% Open
100% Open	-	1	0.057
75% Open	1	-	0.057
50% Open	0.057	0.057	-

Pressure drop at the gate valve



Greatest pressure drops were observed during the gate valve region of passage when the valve was set at 50% open, but not near the barotrauma threshold

Median Pressure Differential during Gate Valve Passage

Sensor Fish Measurements and Live fish Injury Comparison

- Normandeau calculated survival and malady-free estimates adjusted using losses experienced from the control data for Juvenile Chinook Salmon and for YOY Steelhead.
 - No significant correlations between Sensor Fish attributes and juvenile Chinook Salmon or YOY steelhead results (p-value > 0.05).
 - Sensor Fish data showed that 935 ft elevation is better than 910 ft in the Diffuser to Gate Valve and Gate Valve to 24-in. Pipe regions, consistent with Juvenile Chinook Salmon results.

Summary

- Passage time was generally longer and average velocities were less for the 910 ft elevation treatments when compared with the 935 ft treatments.
- Gate valve opening can affect the hydraulic conditions in the passage region between the valve and the 24-in pipe:
 - At the 910 ft elevation there were more severe events at the 50% opening, with the difference being significant between 50% and 75%.
 - At the 935 ft elevation there were more severe events at the 50% opening but none of the differences were significant.
 - No significant difference was observed between the 75% and 100% openings.
- ► There was no significant correlation between Sensor Fish attributes and juvenile Chinook salmon or YOY steelhead results.

Acknowledgements

- Funding support
 - US Army Corps of Engineers, Portland District.
 - U.S. Department of Energy Water Power Technologies Program.
- Technical Support for Numerous Staff:
 - U.S. Army Corps of Engineers: Fenton Khan.
 - Project support from Willamette Valley Project Foster Dam Staff.
 - Normandeau Associates, Inc.
 - Pacific Northwest National Laboratory: James Hughes, Jun Lu, Joshua Hubbard, Hector Delamora.